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ABSTRACT
The present study aimed to explore the involved lncRNA-miRNA-mRNA network in the cell cycle and 
proliferation after conventional treatments in Luminal A breast cancer patients.The candidate 
miRNAs (miRs), lncRNAs, and mRNAs were first taken from the Gene Expression Omnibus and 
TCGA databases. The lncRNA–miR–mRNA network was then constructed using the high- 
throughput sequencing data. The expression levels of selected targets were measured in the breast 
cancer and healthy samples by the Real-Time PCR technique and compared with the clinical 
outcomes by the Kaplan-Meier method.Our analysis revealed a group of differentially expressed 3 
lncRNAs, 9 miRs, and 14 mRNAs in breast cancer patients. A significant expression decrease of the 
selected tumor suppressor lncRNAs, miRs, and genes and a substantial expression increase of the 
selected onco-lncRNAs, oncomiRs, and oncogenes were obtained in the patients compared to the 
healthy group. The plasma levels of the lncRNAs, miRs, and mRNAs were more significant after the 
operation, chemotherapy, and radiotherapy than the pre-treatment. The Kaplan-Meier analysis 
indicated that the patients with a high expression of miR-21, miR-20b, IGF1R, and E2F2 and a low 
expression of miR-125a, PDCD4, and PTEN had exhibited a shorter overall survival rate.Our results 
suggested that the underlying mechanisms of the lncRNA, miRs, and mRNAs and relevant signaling 
pathways may be considered predictive and therapeutic targets for breast cancer.
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Introduction

Non-coding RNAs have central roles in regulating 
specific genes’ expression and may involve breast can
cer’s primary biological processes. They can play vital 
roles in regulating various biological processes, includ
ing cell growth, apoptosis, and stem cell differentiation 
[1]. Thus, they can be considered potential prognostic 
and diagnostic biomarkers, therapeutic targets, and 
treatment-response predictors for human cancers. 
Recent studies have suggested that lncRNAs interact 
with microRNAs (miRs) and modulate their availabil
ity for endogenous mRNA targets. Besides, they can 
show a particularly tissue-specific or cell-type-specific 
expression pattern. Thus, elucidating the function of 

lncRNAs in normal and cancerous cells will be one of 
the following milestones for understanding the mole
cular mechanisms of cancer. Interestingly, it has been 
reported that lncRNAs can also compete with miRs by 
binding directly to mRNAs [2,3]. This issue suggests 
a complex interaction between lncRNAs and miRs 
that can eventually determine the stability and transla
tion of coding protein mRNAs.

Likewise, the aberrant expression of miRs in 
cell proliferative and cell cycle regulatory path
ways is also attributed to resistance to breast 
cancer treatments to suppress cell growth and 
proliferation. It is hypothesized that interplay 
between lncRNAs and miRs might comparatively 
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elucidate the cell-type-specific outcomes. 
Therefore, given this evidence, it has appeared 
that the abundance of lncRNAs may ultimately 
determine the effects of miRs on the expression 
of protein-coding genes. Generally, the interplay 
between lncRNAs and miRs at the intracellular 
and intercellular levels may provide a framework 
for understanding tissue-specific phenomena in 
cancer. Subsequently, the interaction between 
lncRNAs and miRs may affect the signaling cas
cades by regulating the abundance of proteins in 
these pathways in a cell-specific manner. This 
putative mechanism, acting on the intracellular 
level, can also be extended to the communica
tion between different cells. Hence, cell prolif
eration and cell cycle mechanisms may be partly 
explained by the interaction of miRs and 
lncRNAs. Although there is no direct experi
mental evidence for this hypothesis, theoretical 
evidence demonstrates how this interaction 
could contribute to cell proliferation in specific 
tissues.

Overall, monitoring the miRs, lncRNA, and tar
get genes during the treatment can be an appro
priate diagnostic tool for estimating the 
identification and efficacy of therapeutic 
approaches. However, no significant progress has 
been made toward screening and monitoring can
cer patients [4]. Several studies have shown that 
interactions among lncRNAs, miRs, and target 
genes can be used as sensitive and specific indica
tors for identifying different diseases, including 
cancer [5]. A better understanding of underlying 
mechanisms of interactions among them, relevant 
signaling pathways, and ultimately their impacts 
on cell function in future studies will better diag
nose and identify potential sites for more selective 
tumor therapy in human cancers. Thus, it is 
worthwhile to thoroughly characterize the 
mechanisms underlying breast cancer’s aggressive 
characteristics for developing novel targets such as 
non-coding RNAs for the diagnosis and treatment. 
Here, we aimed to explore the involved lncRNA- 
miR-mRNA network in the cell cycle and prolif
eration after surgery and chemo-radiotherapy in 
breast cancer. Using bioinformatics and experi
mental methods, we evaluated their prognostic 
values regarding patients’ clinical outcomes, such 
as the 5-year overall survival rate.

Materials and methods

The data collection of breast cancer datasets

The platforms used for miRs and mRNAs, includ
ing the miRs’ expression profile (GSE81000 and 
GSE44124) and the mRNAs’ expression profile 
(GSE42568 and GSE65194) were downloaded 
from the Gene Expression Omnibus (GEO) data
base (https://www.ncbi.nlm.nih.gov /geo). GSEs’ 
data were downloaded for use with the 
GEOquery R package (https://bioconductor.org/ 
packages/GEOquery) [6]. We analyzed the selected 
lncRNAs, miRs, and genes with P-value < 0.05 and 
|LogFC| > 1 in the datasets as differentially 
expressed genes (DEGs), differentially expressed 
miRNAs (DEMs), and differentially expressed 
lncRNAs (DELs). Moreover, the GEPIA2 (http:// 
gepia2.cancer-pku.cn), the cBioPortal (https:// 
www.cbioportal.org), and the Broad Institute’s 
FireBrowse (http://firebrowse.org) are websites 
for analyzing the differential expression genes 
from the TCGA and Genotype-Tissue Expression 
projects [7]. The used platforms for miRs included 
the OncomiR (http:// www.oncomir.umn.edu/ 
omcd/), miRGator 3.0 (https://tools4mirs.org), 
and miRCancerdb (http://mircancer.ecu.edu) data
bases of TCGA dataset [8]. The used databases for 
lncRNAs included LncRNADisease (http://www. 
rnanut.net/ lncrnadisease) and Lnc2Cancer v3.0 
(http://bio-bigdata.hrbmu.edu.cn/lnc2cancer) of 
TCGA dataset [9,10]. Furthermore, we used the 
Tumor Immune Estimation Resource (TIMER) 
and Cancer Cell Lines Encyclopedia (CCLE) to 
determine DEGs between breast cancer and nor
mal tissues. The DiffExp module in the TIMER 
database (https://cistrome.Shinyapps.io/ timer) 
determined differential expression patterns 
between normal and tumor tissues for DEGs in 
all TCGA tumors [11]. The CCLE database 
(https://portals.broadinstitute.org/ccle) explored 
the expression of DEGs in breast cancer cell lines 
[11]. Figure 1 shows a flowchart diagram for used 
bioinformatics analysis.

The prediction of target genes and lncRNAs of 
candidate miRs

The target genes of miRs were identified by using the 
online predictive program, such as the miRmap 
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(https://mirmap.ezlab.org/app/) [12], miRWalk2 
(http://zmf.umm.uni-heidelberg.de/apps/zmf/mir 
walk2/) [13], and Targetscan Release 7.0 (http://www. 
targetscan.org) [14]. Furthermore, the lncRNAs which 
regulate DEMs were collected by the LncRNA2target 
and TANRIC datasets.

The analysis of GO term pathways by the 
FunRich dataset

The pathway enrichment analyses of the GO 
database were executed through the FunRich 
dataset. Likewise, the same genes were explored 
for pathway enrichment using the g: Profiler tool 
(http://biit.cs.ut.ee/gprofiler) [15]. The lncRNA- 

miR-mRNA network was built using the 
Cytoscape software.

Construction and analysis of the lncRNA–miR– 
mRNA network

The lncRNA–miR–mRNA network was con
structed and visualized using Cytoscape software 
based on the ceRNA theory [16]. The nodes and 
edges were used to represent extensive biological 
data. Each node represents a biological molecule, 
and the edges stand for the interactions between 
nodes and their degrees. The number of edges was 
calculated to exploit the hub nodes that possess 
essential biological functions [17]. To explore the 
structure and feature of the lncRNA–miR–mRNA 

Figure 1. A flowchart diagram for used bioinformatics analysis in the present study. 
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competing triplets, a network analysis was per
formed using a Cytoscape plug-in called 
“Network Analyzer” [18].

Correlation analysis between lncRNAs, miRs, and 
mRNAs in breast cancer

The correlation coefficient was calculated among 
lncRNAs, miRs, and mRNAs. The absolute value of 
the correlation coefficient equal to or more than 0.5 
represented a significant correlation. The interacting 
miRs were matched according to the miR-code data
base (http://www.mircode.org/) using the differen
tially expressed lncRNA and miRs from the above 
analysis. The databases of the TargetScan (http:// 
www.targetscan. org /vert_72/), miRDB (http:// 
mirdb.org/), and miRTarBase (http://mirtarbase. 
mbc.nctu.edu.tw/php/ index .php) were used to pre
dict the miRs’ target genes.

Experimental sample collection

The lncRNAs, miRs, and mRNAs were evaluated 
in 10 healthy plasma samples and 120 breast 
cancer patient samples (Luminal A; ER+, PR+, 
Her2−, and ki-67 < 15%) before and after the 
conventional treatments. Non-inclusion criteria 
were: evidence of metastatic breast cancer, plan
ning to receive any additional neoadjuvant che
motherapy, and pregnant or breastfeeding. The 
patients’ characteristics included age, 
T classification, nodal status, Her2-, hormone- 
receptor-positive status, and tumor subtypes. 
Moreover, the second, third, and fourth samples 
were collected one week before chemo- 
radiotherapy and one month after the last radio
therapy session [19]. Written informed consent 
was obtained from each participant before the 
sample collection.

Real-time PCR analysis

Total RNA was extracted from the plasma samples 
(250 μl) and added to 750 μl TRIzol (Beijing Tiangen 
Biotech Co., Ltd.). RNA extraction was carried out 
according to the manufacturer’s instructions. The 
absorbance ratio (A260/280) of total RNA, between 
1.8 and 2.2, was determined using an ultraviolet (UV) 
spectrophotometer. The miRcute miRNA cDNA 

First-Strand Synthesis kit (Beijing Tiangen Biotech 
Co., Ltd.) for miRNAs quantification and the cDNA 
Synthesis Kit Manual (TAKARA BIO INC. Cat. 6 
30 v.0708) for genes and lncRNAs quantification 
were used according to the manufacturer’s recom
mendations. Then, cDNA was then used in each of 
the real-time PCR assays with the miRcute miRNA 
Fluorescence Quantitative Detection kit (Tiangen 
Biotech Co., Ltd.) for miRs. The cycling conditions 
were as follows: pre-denaturation at 94°C for 2 min, 
followed by 40 cycles of 94°C for 20s and 60°C for 34s. 
The SYBR Green method (AccuPower Green Star 
qPCR Master Mix; Bioneer, Korea) was used for 
genes and lncRNAs. PCR cycling was performed as 
follows: one cycle at 95°C for 10 min, 40 cycles at 95°C 
for 20 seconds, and 60°C for 45 seconds. The melting 
curve analysis was run from 60°C to 95°C to confirm 
specific amplification [20,21]. The expression of U6 
and B-actin was used to normalize miRs, lncRNAs, 
and genes as the Internal Reference Gene. The list of 
primers has shown in Table 1. The qRT-PCR reactions 
were performed using an ABI StepOne plus System 
(Applied Biosystems; Thermo Fisher Scientific, Inc.). 
The expression level of the selected lncRNAs, miRs, 
and mRNAs were calculated using the – ΔCT method. 
The ΔCT was calculated by subtracting the CT values 
of U6 and B-actin from the CT values of the targets 
[22,23].

Clinical outcomes

We evaluated the association of the expression 
levels of candidate lncRNAs, miRs, and mRNAs 
with the clinicopathological feature of the patients. 
The 5-year overall survival (OS) was measured by 
the Kaplan-Meier method.

Data analysis

The sample size was calculated based on a study by 
Chen et al. (2016) and according to the differences 
in expression of miR-21 in healthy subjects and 
patients with breast cancer [20]. With considering 
the alpha error of less than 0.05 (α) and the 
research power of 95% (1-β), the sample size was 
obtained approximately 30 in each group. G Power 
software version 3 (pmid:17,695,343) was used to 
estimate the sample size. The data analyses were 
performed by GraphPad Prism 7.0. Kolmogorov- 
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Smirnov was used to evaluate the natural distribu
tion of data. We used the t-test and the Mann- 
Whitney to analyze the parametric and non- 
parametric data in two groups. A repaid measured 
ANOVA to calculate the intra-group data. To 
evaluate the value of circulating lncRNAs, miRs, 
and mRNAs in predicting relapse, receiver operat
ing characteristics (ROC) curves were constructed, 
and the area under the curve (AUC) was calcu
lated. The five-year overall survival rate of candi
date lncRNAs, miRs, and mRNAs was evaluated 
using the Kaplan-Meier method. All data were 
presented as mean ± SD. A p-value < 0.05 was 
considered to be statistically significant.

Results

Identification of DEGs

GEO and TCGA datasets were analyzed to identify 
differentially expressed lncRNAs, miRs, and genes in 
breast cancer and healthy samples. FunRich_3.1.3 
software made a Venn diagram and extracted the 
common selected datasets (Figure 2). 156 miRs (36 
up-regulation and 120 down-regulation) (Figure 2a), 

2060 mRNAs (891 up-regulation and 1169 down- 
regulation) (Figure 2b), and 169 lncRNAs (102 up- 
regulation and 67 down-regulation) (Figure 2c) were 
obtained from the selected datasets. The top up- 
regulated miRs were miR-21, miR-20a, and miR-20b, 
and the top down-regulated miRs were miR-145, miR- 
196b, and miR-125a (Table 2). The target genes of 
selected miRs have been represented in (Tables 3, 4, 
5). Likewise, the lncRNAs of selected miRs were 
obtained using the LncRNADisease, Lnc2Cancer 
v3.0, LncRNA2target, and TANRIC datasets (Table 6).

We also used TIMER and CCLE databases to 
reveal the transcriptional expressions of the 
selected DEGs (Figure 3 and Figure 4). We deter
mined the distributions of gene expression levels 
using the TIMER database displayed in a box plot 
(Figure 3). In addition, we studied the expression 
levels of the selected DEGs in breast cancer cell 
lines using the CCLE database (Figure 4).

Enrichment analysis of DEGs

To examine the biological function of the DEGs, GO 
analysis was performed in the FunRich software. The 
DEGs were mainly enriched in the receptor binding, 

Table 1. The list of primers for Real-Time PCR.
Genes/miRNAs/LncRNAs Forward primer Reverse primer

MYC TTTCTGGAGTAGCAGCTCCTAA ATGGCCCATTACAAAGCCG
CCND1 CATGGAGGGCGGATTGGAA CAATGACCCCGCACGATTTC
WNT1 CCAGCCTTCACTTGCTGAG TTCAGACACGAGAGATGGAACT
PIK3CA TGGCGGATAGACATACATTGC ACCAGTAGGCAACCGTGAAG
AKT1 ACCGCACATCATCTCGTACA GTGCCACCATGAAGACCTTT
E2F2 AGTCCTGAGCCTGTTTTGTG GGGAGGGCTTTCTTTGTGTA
ERBB2 CAGGGGTGGTATTGTTCAGC GGGAAACCTGGAACTCACCT
FGFR1 AGATGGGACCACACTTTCCATA GGTGGCTGAAAAACGGGAAG
IGF1R GGTGCCAGGTTATGATGATG GCAAAGGGGACATAAACACC
APC GACCAGAAAAGTAGCTGCCG GCCCGGATGTGCACTAAAAT
SOCS1 TAAGGGCGAAAAAGCAGTTCC CACGCACTTCCGCACATTC
PTEN GGTGGGTTATGGTCTTCAAAAGG TGGATTCGACTTAGACTTGACCT
PDCD4 CTAGCCTGCACACAATCTACAGTT CCTGAATTAGCACTGGATACTCCT
FOXO3 CACGGCTTGCTTACTGAAGG TCACGCACCAATTCTAACGC
B-actin CACCATTGGCAATGAGCGGTTC AGGTCTTTGCGGATGTCCACGT
miR-21 CGCCATGTAAAGTGCTTATAGTGC CGATTCATTTGTTAGCGAGCGG
miR-10b TTGGAGTTACCCTGTAGAACCG TAAGCACGAGACTTACGGAGGA
miR-155 CGCCATGTTTAATGCTAATCGTGA TTCCAGAAACCGATCAGAGTGT
miR-20a CGCCATGTAAAGTGCTTATAGTGC CGATTCATTTGTTAGCGAGCGG
miR-20b GCCCTAAATGCCCCTTCTGGCA ACACTGCACAGTCCCCACCATCT
miR-224 CGTTTGCCAAGTCACTAGTGGT TTGTAAGCACGCTACATCCTGA
miR-145 GTAGGAGGTCCAGTTTTCCCAG TGAACTTCGCAACTACCGTTTG
miR-196b GGTCTCCCCAGTGTTCAGACTA AGAAGGCGATTGATACGAGTCA
miR-125a GTTGATTCTCCCTGAGACCCTTTA GTCCTCACAACGATTCCACAAG
U6 ATGCAGTCGAGTTTCCCACAT CCATGATCACGAAGGTGGTTT
HOTAIR GCTTCTAAATCCGTT CTCCACGGTAAATCCGGCAG
SRA1 CCG ACC TTA TAG ACA CGG GAC GC TCC CAT GTT CCT GGA CTG ACG A
ZFAS1 AACCAGGCTTTGATTGAACC ATTCCATCGCCAGTTTCT
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protein serine/threonine kinase activity, growth factor 
activity, transcription factor activity, kinase regulator 
activity, and DNA repair protein (Table 7). 
Furthermore, up-regulated DEGs were exclusively 
enriched in the pathways, including the EGF receptor 
signaling and the Glypican pathway and the FGFR 
signaling pathway (Figure 5a). The most significantly 
enriched pathways associated with cancer were VEGF, 
MAPK, ERBB, RAP1, and RAS signaling pathways 
(Figure 5a). However, down-regulated DEGs were 

mainly enriched in the pathways, including the 
mTOR, P53, IGF1, and ATM (Figure 5b). Likewise, 
the functional enrichment of DEG genes was analyzed 
using the g: Profiler software (Figure 6).

PPI network analysis of DEGs

PPI analysis of DEGs was performed in the FunRich 
software. Two significant modules with a score ≥ 7 
were screened out via the FunRich software. BRAF1, 
PIK3R1, TGFBR2, EGFR, IGF1R, RAF1, VEGF, 
TWIST, and NOTCH were hub nodes with higher 
node degrees in module 1 (Figure 7a), and ESR1, 
BRCA1, HOXD11, RB1, GSK3B, SP1, TP53, and 
SOS1 were hub nodes in module 2 (Figure 7b). 
Furthermore, VEGF, TGFBR2, TWIST, HMGA1, 
NOTCH, and HOXD11 hub genes were selected for 
further analysis owing to the high degree of connec
tivity (Figure 7c). As described in the method section, 
we identified 3 co-expression lncRNAs, 9 co- 
expression miRs, and 14 co-expression mRNAs 
selected to construct the lncRNA–miR–mRNA net
work (Figure 8).

Figure 2. Venn diagram of the differently expressed lncRNAs, miRs, and mRNAbetween GEO and TCGA datasetsAllocation of (a) the 
156 differently expressed miRs (36 up-regulation and 120 down-regulation), (b) 2060 differently expressed genes (891 up-regulation 
and 1169 down-regulation), and (c) the 169 differently expressed lncRNAs (102 up-regulation and 67 down-regulation) found 
between the used datasets in the present study. 

Table 2. The candidate miRs involved in the cell cycle and 
proliferation pathways in breast cancer patients.

miRs adj.P.Val logFC

UP-regulated
miR-21 5.51E-06 2.84086
miR-10b 2.16e-05 2.173494
miR-155 8.78e-04 3.20482
miR-20a 4.20e-04 2.04178
miR-20b 3.60e-05 2.02111
Down-regulated
miR-145 0.00035118 −3.771778
miR-196b 0.0046717 −2.017851
miR-224 0.009643 −2.032727
miR-125a 0.00046119 −2.3917
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Construction of ceRNA network of lncRNA-miR- 
mRNA in breast cancer

To further understand the role of differentially 
expressed lncRNAs in breast cancer, we performed 
correlation analysis with the expression variability of 
lncRNAs, miRs, and mRNAs. Accordingly, there was 
a strong correlation between some network 

components, including miR-196b and HOTAIR, 
miR-20a and IGF1R gene, and miR-196b and 
PIK3CA gene. Moreover, we created a heat map of 
expression of the selected lncRNAs, miRs, and 
mRNAs using CIMminer (https://discover.nci.nih. 
gov/cimminer/home.do) (Figure 9). The results 
showed that three lncRNAs were involved in regu
lating nine miRs. After a subset of sections was 
obtained from nine miRNA-regulated target genes 
and differentially expressed mRNAs, 14 target genes 
regulated by miRNAs were identified. Thus, 3 
lncRNAs, 9 miRs, and 14 mRNAs are directly related 
to lncRNA-miRNA-mRNA in breast cancer 
(Figure 10).

Pre-treatment analysis of the candidate lncRNAs, 
miRs, and genes in breast cancer patients

The expression levels of the miRs, including miR- 
21, miR-10b, miR-125a, miR-155, miR-20a, miR- 
20b, miR-224, miR-145, and miR-196b, and also 

Table 4. The candidate genes in breast cancer patients.
Genes adj.P-value

E2F2 1.92e-118
AKT1 2.23e-67
MYC 1.54e-47
CCND1 3.67e-44
PIK3CA 6.65e-70
IGF1R 8.67e-168
FGFR1 2.30e-77
ERBB2 5.52e-61
PDCD4 7.19e-49
WNT1 2.51e-120
APC 9.32e-154
SOCS1 9.82e-113
FOXO3 8.34e-206
PTEN 3.92e-63

Table 5. The list of candidate genes involved in cell cycle and proliferation pathways in breast cancer patient.
Genes Target miRs

Cell cycle
APC miR-21, miR-125a
MYC miR-21, miR-20a, miR-125a, miR-145
CCND1 miR-21, miR-20a, miR-20b
WNT1 miR-125a, miR-145, miR-155, miR-196b, miR-224, miR-10b
SOCS1 miR-224

Proliferation
PIK3CA miR-125a, miR-145, miR-196b, miR-224, miR-10b
AKT1 miR-21, miR-125a, miR-145, miR-196b, miR-224
PDCD4 miR-20a, miR-20b, miR-155, miR-21, miR-196b, miR-145
E2F2 miR-125b, miR-196b, miR-224
FGFR1 miR-20a, miR-20b, miR-145, miR-196b
PTEN miR-21, miR-125a, miR-145
ERBB2 (Her2) miR-125a,
IGF1R miR-21, miR-155, miR-10b, miR-20a, miR-20b, miR-224, miR-145, miR-196b
FOXO3 miR-196b, miR-224, miR-155, miR-125a, miR-10b, miR-21

Table 3. The predicted genes involved in the cell cycle and proliferation pathways in breast cancer patients.
Up-regulated AKT2, BCL2,CCND1, EGFR, IGFIR, MYC,PI3KR1, IGFB1, IGFB2, IGFBR2, BCL2, CCND1, FZD9, MAPK1, MAPK9, MYC, SMAD4, TGFBR2, 

FGFR1, FZD9, FZD4, MAPK1, MAPK9, SMAD4, FZD3, MYC, FGF1, FGF18, PIK3R1, FGF2, WNT16, BRAF, WNT4, WNT2B, WNT9A, 
AKT3, FGF23, IGF1, WNT10B, IGF1R, WNT3, WNT5A, PIK3CB, CDK6, NCOA3, MAPK1, AKT2, FGF1, WNT4, WNT9A, AKT3, WNT4, 
PIK3R3, WNT9A, AKT3, RAF1, PIK3CB, FGF2, PIK3R1, FGF1,CDK6, CDK4, FZD10,IGF1R, FZD2, WNT3, WNT9B, FZD3,FGF8, WNT5B, 
KRAS, FGFR1, EGFR, WNT2, FZD3, FGF23, WNT8B, WNT1, IGF1, MAP3K2, AKT2, MAPK1, WNT7B, RAF1, WNT5A, PIK3CB, PIK3CA, 
PIK3R1, FGF1, CDK6, WNT16, BRAF, MYC, AKT3, WNT5A, FGFR1, KRAS, WNT10B, FGF9, IGF1R, WNT7B, FGFR1, PIK3R3, FZD3, 
POLK, EGFR, BRAF, AKT3, RAF1, PIK3CB, MAPK1, FGF5, FGF2, PIK3R1, POLK, CDK6, WNT2, WNT16, BRAF, KRAS, IGF1, FGF7, 
IGF1R, WNT9B, NCOA3, MAPK1, WNT7B, LRP6, CDK4, IGF1, RPS6KB1, RPS6KB2, PIK3R1, WNT8A, PIK3CD, FGF1, BRAF, NCOA1, 
WNT5A, TFAP2A, APPL1, JAG1, SHC3, JUN, SHC1, SHC2, CTNNB1, DVL3, DVL1, LEF1, ERBB2, HES5, FLT4, CDKN1A, DLL4, 
GADD45B, SOCS7, SOCS5, SESN3, BCL2L2, GABRB1, NUFIP2

Down-regulated APC, PTEN, FOXO3, PDCD4, TP53, TCF7L2, E2F2, TCF7, POLK, BAK1, TP53, BRCA1, APC2, E2F1, GSK3B, BAX, SP1, RB1, GSK3B, 
HOXD10,SP1, AP1, TCF7, FRAT2, FRAT1, ESR1, ESR2, BAK1, DDB2,E2F3, ESRRG, CYCS, MSH2, MSH6, MSH3, ACVR1B, KIT, HEYL, 
GADD45A, CSNK1A1, CSNK1A1L, TNFSF11, SCH3, AXIN2, ZDHHC21, PTEN, CCND1, FOXO1, SOCS2
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the genes, including APC, SOCS1, MYC, WNT1, 
CCND1, IGF1R, E2F2, AKT1, PIK3CA, FGFR1, 
ERBB2, FOXO3, PDCD4, and PTEN, and also 
lncRNAs, including SRA1, HOTAIR, and ZFAS1, 
demonstrated significant differences in the 
patients compromised with the healthy subjects 
(P < 0.05).

Furthermore, The results showed a similar 
expression pattern of the selected miRs, genes, 
and lncRNAs between the nodal status (−)/(+), 
the menopause status, and the stages of patients.

The expression of tumor suppressor- and 
onco-lncRNAs after the conventional treatments

The expression levels of the onco-lncRNAs, 
including SAR1 and HOTAIR, were signifi
cantly increased in the patients compromised 
with the healthy subjects (P < 0.0001) 
(Figure 11A-b).

Table 6. Interaction analysis between selected miRs and 
lncRNAs involved in cell cycle and proliferation pathways in 
breast cancer patients.

LncRNAs Target miRNAs

ZFAS1 miR-196b, miR-20a
HOTAIR miR-20b, miR-20a
SRA1 miR-20b, miR-20a

Figure 3. The expression of the candidate genes in breast cancer(a) A box plot of the candidate genes’ transcripts in normal and 
breast cancer tissues in the TIMER database. Statistical significance was calculated using the Wilcoxon test, *** p < 0.00. 
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Figure 4. A heatmap of the genes’ expression in breast cancer cell lines (CCLE). We used mRNA expression values from the CCLE 
database and then ranked them. In CCLE, purple represents overexpression (top column), and blue indicates under-expression 
(bottom column). 

Table 7. The GO enrichment analysis for DEGs.
Source term_name term_id adj_p_value −log10(padj)

GO: CC
transferase complex, transferring phosphorus-containing groups GO:0061695 0.004582707 2.338877905
extrinsic component of membrane GO:0019898 0.008857802 2.052674039
protein-containing complex GO:0032991 0.025512924 1.593239769
phosphatidylinositol 3-kinase complex GO:0005942 0.027452467 1.561418614

GO: MF
protein kinase activity GO:0004672 0.000568652 3.245154
protein kinase binding GO:0019901 0.001324113 2.878075
phosphotransferase activity, alcohol group as acceptor GO:0016773 0.001477544 2.83046
protein kinase regulator activity GO:0019887 0.002395176 2.620663
kinase binding GO:0019900 0.00251691 2.599132
kinase activity GO:0016301 0.003284015 2.483595
kinase regulator activity GO:0019207 0.004281197 2.368435
insulin receptor substrate binding GO:0043560 0.007291041 2.13721
transferase activity, transferring phosphorus-containing groups GO:0016772 0.009011408 2.045207
transmembrane receptor protein tyrosine kinase activity GO:0004714 0.026357557 1.579095
growth factor binding GO:0019838 0.036785922 1.434318
protein tyrosine kinase activity GO:0004713 0.039149829 1.40727
transmembrane receptor protein kinase activity GO:0019199 0.039959246 1.398383

GO: BP
regulation of cell population proliferation GO:0042127 3.20372E-06 5.494345
cell population proliferation GO:0008283 1.56308E-05 4.806017
cell death GO:0008219 5.28086E-05 4.277295
positive regulation of cell population proliferation GO:0008284 0.000251265 3.599869
regulation of epithelial cell proliferation GO:0050678 0.000442664 3.353926
positive regulation of epithelial cell proliferation GO:0050679 0.000595434 3.225166
epithelial cell proliferation GO:0050673 0.000990806 3.004011
G1/S transition of mitotic cell cycle GO:0000082 0.001595936 2.796984
cell cycle G1/S phase transition GO:0044843 0.002595649 2.585754
regulation of cell cycle GO:0051726 0.011959955 1.92227
reentry into mitotic cell cycle GO:0000320 0.01257232 1.900585
regulation of smooth muscle cell proliferation GO:0048660 0.012635894 1.898394
regulation of G1/S transition of mitotic cell cycle GO:2000045 0.013206732 1.879205
smooth muscle cell proliferation GO:0048659 0.013499198 1.869692
regulation of cell cycle G1/S phase transition GO:1902806 0.022064212 1.656312
muscle cell proliferation GO:0033002 0.048090747 1.317938

GO: gene ontology, CC: cellular component, MF: molecular function, and BP: biological process 
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The expression level of tumor suppressor 
lncRNA, including ZFAS1, showed a significant 
decrease in the patients compromised with the 
healthy subjects (P < 0.0001) (Figure 11C). 
However, the expression levels of the tumor sup
pressor lncRNAs and onco-lncRNAs showed sub
stantial changes after conventional treatments 
compromised with pre-treatment (P < 0.0001).

Validation of selected oncomiRs and tumor 
suppressor miRs after the conventional 
treatments

The expression levels of the oncomiRs, including 
miR-21, miR-20a, miR-20b, miR-155, and miR- 
10b, were significantly increased in the patients 
compromised with the healthy subjects 
(P < 0.0001) (Figures 12A-12e). The expression 

Figure 6. Functional enrichment by using the g: Profiler software (a) the X-axis shows the functional terms grouped and color-coded 
by the data source. (B, C, and F) the position of terms in the plots fixed and terms from the same branch (GO). (d) p-values in the 
table outputs are color-coded from yellow (insignificant) to blue (highly significant). (e) in a multi-query case, the same term is 
highlighted on other plots. (g) a click allows for pinning the circles to the plot together with a numeric ID, creating a more detailed 
result in the table below the image. 

Figure 5. The enrichment analysis of the GO pathway of the DEGs (a) Top 7 functional network/pathways associated with the up- 
regulated DEGs through GO analysis with a p-value less than 0.05. (b) Top 7 functional network/pathways related to the down- 
regulated DEGs through GO analysis with a p-value less than 0.05. 
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levels of the oncomiRs showed a significant 
decrease after conventional treatments were com
promised with pre-treatment. The expression 
levels of tumor suppressor miRs, including miR- 
145, miR-224, miR-125a, and miR-196b, have 
shown a significant decrease in breast cancer 
patients compared to the healthy subjects 
(P < 0.0001) (Figure 12F-i). However, the expres
sion levels of the tumor suppressor miRs showed 
a significant increase after conventional treatments 
compared to the pre-treatment (P < 0.0001).

Validation of the selected onco- and tumor 
suppressor genes

The expression levels of the oncogenes, including 
IGF1R, E2F2, AKT1, PIK3CA, FGFR1, ERBB2, 
MYC, and WNT1, were significantly increased in 
the patients compromised with the healthy sub
jects (P < 0.0001) (Figure 13A-h). The expression 
levels of the oncogenes showed a significant 
decrease after conventional treatments were com
promised with pre-treatment. The expression 

Figure 7. Protein-protein interaction (PPI) network constructionPPI network was constructed with the DEGs from the four datasets of GEO 
and TCGA. (a-b) The significant module was identified from the PPI network using the FunRich method with ≥ 7. Panel A shows module 1 
of up-regulated genes. Panel B shows module 2 of down-regulated genes. Panel C shows the interaction between modules 1 and 2. 
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levels of tumor suppressor genes, including 
CCND1, APC, SOCS1, FOXO3, PDCD4, and 
PTEN, have shown a significant decrease in breast 
patients compared to the healthy subjects 
(P < 0.0001) (Figure 13I-n). However, the expres
sion levels of the tumor suppressor genes showed 
a significant increase after conventional treatments 
compromised with pre-treatment (P < 0.0001).

The candidate miRs and mRNAs as predictive 
targets

The mean follow-up duration of the patients was 
4.7 ± 1.3 years. During this follow-up period, six 
patients were deceased due to the disease. Besides, 
two patients had recurrences and underwent a new 
course of treatment. We performed the log-rank 
survival analysis according to the expression levels 
of the candidate lncRNAs, miRs, and mRNAs to 
investigate the predictive targets by the Kaplan- 
Meier analysis. Except for candidate lncRNAs, 
the patients with a high expression of miR-21, 
miR-20b, IGF1R, and E2F2 and a low expression 
of miR-125a, PDCD4, and PTEN exhibited 
a shorter overall survival rate (Figures 14–15).

Discussion

Our analysis revealed a group of differentially 
expressed 3 lncRNAs, 9 miRs, and 14 mRNAs in 
breast cancer patients. To better understand the 
interactions of target genes with different signaling 
pathways, the GO and KEGG pathway analyses 
were performed. The pathway analyses showed 
that the selected miRs could interact with more 
significant genes involved in signaling pathways. 
Our results also demonstrated a substantial differ
ence in the expression levels of the lncRNAs, miRs, 
and target genes after surgery and chemo- 
radiotherapy compared to pre-treatment. 
Collectively, these results suggested that they may 
be a potential prognostic biomarker for patients 
with breast cancer.

Our results are in line with previous studies 
conducted by Anastasov et al. (2012) and Wang 
et al. (2015) [24,25]. Their findings suggest that 
tumor resection may alter some of the inflamma
tory, physiological, and even pathological features 
of cells in affected tissues [26]. The surgical pro
cedure involves the removal of the tumors loca
lized in the tissues and nearby margins. It has been 
demonstrated that a breast tumor’s pathological 
characteristics may have significant impacts on 

Figure 8. The lncRNA-miRNA-mRNA network The network includes 27 nodes and 126 edges. The blue rhombus, red hexagonal, and 
yellow oval represent the lncRNAs, miRs, and genes. 
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pathways associated with homeostasis, and these 
remarkable effects persist even more than two 
weeks after complete tumor resection. Indeed, 
alterations in cell behavior and physiological 
responses to tumor removal suggest that surgical 
treatments can play a critical role in the conse
quences of cell behaviors associated with patholo
gical processes in cancer [26].

Moreover, chemotherapy drugs are systemi
cally or locally given. Although the goal of sur
gery is to remove all visible tumor lesions, the 
cancer cells can be left after tumor resection by 
chemotherapy. Thus, chemotherapy can be used 
as adjuvant therapy to destroy the remaining 
cancer cells after surgery [27]. Another option 
available for a particular type of cancer, including 

Figure 9. A plot heatmap to show the gene expression profile of DEGs in both bioinformatics (a) and experiment data (-∆CT) (B and 
C) in breast cancer patients The green color indicates down-regulated genes, and the red indicates up-regulated genes between 
tumor and normal samples. 
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Figure 10. ceRNA regulatory network of lncRNAs, miRs, and mRNAs in rectal cancerNote: Red lines indicate a negative correlation, and 
green lines indicate a positive correlation. SRA: SRA1, HOT: HOTAIR, ZFA: ZFAS1, mR-21: miR-21, mR-10: miR-10b, mR-15: miR-155, mR-20: 
miR-20a, mR-20b: miR-20b, mR-14: miR-145, mR-19:miR-196b, mR-1:miR-125a, mR-24: miR-224, IGF: IGF1R, E2F: E2F2, AKT: AKT1, PI3: 
PIK3CA, FGF: FGFR1, ERB: ERBB2, MYC: MYC, WNT: WNT1, CCN: CCND1, APC:APC, SOC: SOCS1, FOX: FOXO3, PDC: PDCD4, PTE: PTEN. 

Figure 11. The relative expression of the selected lncRNAs in the breast cancer patientsThe relative expression levels of the lncRNAs 
were normalized by using a reference RNA. The oncogenic lncRNAs included: A) SRA1 and B) HOTAIR. Tumor suppressor 
lncRNAsincluded: C) ZFAS1. The expression level of the lncRNAs was calculated using the – ΔCT method. 
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breast cancer, is radiation therapy. It can directly 
damage the chemical structure of the genetic 
material of cancer cells and, therefore, be used 
to prevent cancer cells’ proliferation and induce 
their death [28,29]. In cancer research, the effi
cacy of therapeutic approaches is a substantial 
factor in continuing treatment. In cases with no 
detectable tumor, an increase in the oncomiRs or 
a decrease in tumor suppressor-miRs may indi
cate treatment failure. It is worth noting that the 

operation, chemotherapy, and radiotherapy can 
shrink the tumor size, leading to a more reduc
tion in the oncomiRs and an increase in the 
tumor suppressor-miRs.

Many studies have shown that miRs can play 
a significant role in breast tumors’ cell cycle and 
proliferation pathways through functional interac
tion with the cyclin and the kinase proteins. In this 
setting, the up-regulation of protein kinases and 
down-regulation of their inhibitors by miRs can 

Figure 12. The relative expression of the candidate miRs in the breast cancer patientsThe relative expression levels of the miRs were 
normalized by using a reference RNA.The oncomiRs included: A) miR-21, B) miR-10b, C) miR-155, D) miR-20a, E) miR-20b.Tumor suppressor 
miRs included: F) miR-145, G) miR-196b, H) miR-125a, I) miR-224.The expression level of the miRs was calculated using the – ΔCT method. 
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increase breast tumors’ cell viability and result in 
the aberration of the cell cycle alterations [30]. 
Likewise, the dysregulation of miRs in the cell 
proliferative and the cell-cycle regulatory network 
is attributed to resistance to cancer treatments to 
suppress cell growth and proliferation [29]. Liu 
et al. (2018) indicated that miR-26a/E2F7 feedback 
loop could contribute to the regulation of tamox
ifen resistance in ER-positive breast cancer. 
Notably, it has been demonstrated that the over
expression of miR-26a could directly inhibit E2F7 
expression and indirectly repress MYC expression. 
On the other hand, E2F7 overexpression could 
decrease miR-26a expression through MYC tran
scription inhibition. They also showed that miR- 
26a overexpression and E2F7 silencing could 
desensitize breast tumor cells to tamoxifen, redu
cing cell viability and inducing G1 cell cycle 
arrest [31].

LncRNAs and miRs and the crosstalk between 
them are eminent players in the pathophysiological 

processes of cancers. LncRNAs have been shown to 
play pivotal roles in regulating multiple cellular pro
cesses in normal cells or tumor formation and devel
opment of cancerous cells through various 
mechanisms [32]. However, few studies have 
described the regulatory mechanisms of lncRNA- 
miR-mRNA in cancer. In this setting, HOX 
Antisense Intergenic RNA (HOTAIR) is a lncRNA 
located at the HoxC gene cluster on chromosome 12. 
It has been demonstrated that HOTAIR has 
a significant role in silencing HoxD gene expression 
in the tumor through interactions with chromatin- 
modifying enzymes and regulates the expression of 
the PTEN gene [33–35]. In this setting, growth 
arrest-specific transcript 5 (GAS5) can compete 
with PTEN to bind miR-21; thus, it can positively 
regulate the expression of PTEN and negatively reg
ulate miR-21 expression. In other words, a decreased 
or increased expression of GAS5 can lead to over
expression or reduced expression of miR-21 and 
subsequently cause the down-regulation or up- 

Figure 12. (Continued). 
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Figure 13. The relative expression of the selected genes in the breast cancer patients The relative expression level of the genes was 
normalized by using a reference gene. The oncogenes included: A) IGF1R, B) E2F2, C) AKT1, D) PIK3CA, E) FGFR1, F) ERBB2, J) MYC, H) 
WNT1. Tumor suppressor genes included: I) CCND1, G) APC, K) SOCS1, L) FOXO3, M) PDCD4 and N) PTEN. The expression level of the 
mRNAs was calculated using the – ΔCT method. 
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regulation of PTEN in tumor cells [36,37]. GAS5 can 
also induce PTEN expression by inhibiting miR-103, 
miR-196b, miR-205, and miR-32 [38,39]. 
Furthermore, the regulation of miR-181a on the 
PTEN gene was mediated by a lncRNA X–inactive 
specific transcript (XIST). The inhibition of XIST 
can lead to a significant increase in cell proliferation 
and liver cancer invasion, leading to a decreased 
PTEN expression [40]. These observations collec
tively led us to propose the novel hypothesis that 
such interactions may increase cell proliferation and 

hinder apoptosis through inhibition or direct activa
tion of target genes involved in these pathways.

Overall, our results demonstrated that the changes 
in the candidate lncRNA-miR-mRNA network were 
associated with poor OS in breast cancer patients. In 
this context, the prognosis is an important indicator 
of disease treatment. Therefore, we hypothesized 
that this lncRNA-miR-mRNA network might signif
icantly influence breast cancer’s pathogenesis and 
prognosis. In the present study, the patients with 
a high expression of miR-21, miR-20b, IGF1R, and 

Figure 13. (Continued) 

18 M. MOHSENIKIA ET AL.



Figure 14. A Kaplan-Meier analysis of 5-year overall survival of candidate miRs in the breast cancer patientsThe patients with high 
expression of miR-21, miR-20b, and low expression of miR-125a had exhibited a shorter overall survival rate. Cutoff point: mean 
value of the candidate expression.A: miR-21, B: miR-20b, and C: miR-125a. 

Figure 15. A Kaplan-Meier analysis of 5-year overall survival of candidate mRNAs in the breast cancer patients The patients with a high 
expression of IGF1R and E2F2 and a low expression of PDCD4 and PTEN had exhibited a shorter overall survival rate. Cutoff point: mean value of 
the selected candidate expression. A: IGF1R, B: PDCD4, C: PTEN, and D: E2F2. 
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E2F2, and a low expression of miR-125a, PDCD4, 
and PTEN exhibited a shorter overall survival rate. 
In addition, the candidate lncRNAs were not con
ducive to the prognosis of patients, and the regula
tion between miRs and lncRNAs may be more 
complicated. In this setting, Gao et al. (2021) 
observed that, unlike high expression miRs, low 
expression lncRNAs/miRs were significantly asso
ciated with a better overall survival rate. They 
found that 10 lncRNA and 6 miRs can predict the 
overall survival of patients with breast cancer [41]. 
Like Tuersong et al. (2019) [42], Jing-Jing Wang 
et al. (2019) found that six lncRNAs, two miRs, and 
nine mRNAs were negatively/positively associated 
with OS; thus, these RNAs may serve as potential 
prognostic biomarkers of OS in patients with breast 
cancer [43]. These instances can show the high ver
satile potential of the ceRNA network in the clinic. 
Xiao et al. (2015) demonstrated that MALAT1 might 
promote the expression of ZEB2 by expanding miR- 
200s [44]. Chen et al. (2017) revealed that the top 10 
aberrantly expressed lncRNAs have essential roles 
through a lncRNA-miR-mRNA network [45]. Li 
et al. (2018) described a novel ceRNA network 
including 11 lncRNAs, 9 miRs, and 41 mRNAs in 
cancer [46]. Accordingly, an investigation into the 
ceRNA network may provide insight into specific 
disease processes and aid the development of novel 
therapeutic strategies [43]. Our results highlighted 
the potential of the lncRNA-miR-mRNA network in 
understanding the pathogenesis of breast cancer. 
Simultaneously, we demonstrated that this panel 
could dynamically change during the treatment 
phases. They may propose innovative concepts and 
an experimental basis for identifying predictive bio
markers and therapeutic targets.

Conclusion

Overall, monitoring the lncRNA, miRs, and target 
genes during the treatment can be an appropriate 
diagnostic tool for estimating the identification and 
efficacy of therapeutic approaches. Understanding 
their underlying interactions will better diagnose and 
identify potential sites for more selective tumor ther
apy. Thus, it is worthwhile to thoroughly characterize 
the mechanisms underlying breast cancer’s aggressive 
characteristics for developing novel targets such as 
non-coding RNAs for the diagnosis and treatment.
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