Breast Cancer Treatment
A Review
Adrienne G. Waks, MD; Eric P. Winer, MD

IMPORTANT REASON
Breast cancer will be diagnosed in 12% of women in the United States over the course of their lifetimes and more than 250,000 new cases of breast cancer were diagnosed in the United States in 2017. This review focuses on current approaches and evolving strategies for local and systemic therapy of breast cancer.

OBSERVATIONS
Breast cancer is categorized into 3 major subtypes based on the presence or absence of molecular markers for estrogen or progesterone receptors and human epidermal growth factor 2 (ERBB2; formerly HER2): hormone receptor positive/ERBB2 negative (70% of patients), ERBB2 positive (15%-20%), and triple-negative (tumors lacking all 3 standard molecular markers; 15%). More than 90% of breast cancers are not metastatic at the time of diagnosis. For people presenting without metastatic disease, therapeutic goals are tumor eradication and preventing recurrence. Triple-negative breast cancer is more likely to recur than the other 2 subtypes, with 85% 5-year breast cancer–specific survival for stage I triple-negative tumors vs 94% to 99% for hormone receptor positive and ERBB2 positive. Systemic therapy for nonmetastatic breast cancer is determined by subtype: patients with hormone receptor-positive tumors receive endocrine therapy, and a minority receive chemotherapy as well; patients with ERBB2-positive tumors receive ERBB2-targeted antibody or small-molecule inhibitor therapy combined with chemotherapy; and patients with triple-negative tumors receive chemotherapy alone. Local therapy for all patients with nonmetastatic breast cancer consists of surgical resection, with consideration of postoperative radiation if lumpectomy is performed. Increasingly, some systemic therapy is delivered before surgery. Tailoring postoperative treatment based on preoperative treatment response is under investigation. Metastatic breast cancer is treated according to subtype, with goals of prolonging life and palliating symptoms. Median overall survival for metastatic triple-negative breast cancer is approximately 1 year vs approximately 5 years for the other 2 subtypes.

CONCLUSIONS AND RELEVANCE
Breast cancer consists of 3 major tumor subtypes categorized according to estrogen or progesterone receptor expression and ERBB2 gene amplification. The 3 subtypes have distinct risk profiles and treatment strategies. Optimal therapy for each patient depends on tumor subtype, anatomic cancer stage, and patient preferences.

Worldwide, breast cancer is the most common cancer in women, other than nonmelanoma skin cancer. More than 250,000 new cases of breast cancer were diagnosed in the United States in 2017, and breast cancer will be diagnosed in 12% of all women in the United States over their lifetimes. This review summarizes evidence-based approaches to the systemic and local treatment of the 3 major breast cancer subtypes: hormone receptor positive/ERBB2 negative (HR+/ERBB2−), ERBB2 positive (ERBB2+), and triple-negative.

Methods
We searched PubMed for English-language articles related to the treatment of breast cancer, with a focus on large randomized clinical trials or meta-analyses and guidelines of major professional societies. The indices of major medical and oncology journals were comprehensively reviewed for articles published from January 1, 2013, to November 11, 2018, on the topic of breast cancer treatment. Articles agreed on by both authors to define modern practice were included, with priority given to prospective randomized trials and large meta-analyses that represent the first and/or the most important evidence establishing current standard of care in breast cancer.

Clinical Presentation
In the modern era of widespread screening mammography, more than half of breast cancers in the United States are diagnosed on screening mammogram, and approximately one-third...
Diagnosis and Pathophysiology

Breast cancer is a histologic diagnosis made according to standardized pathologic criteria. The most common breast cancer histology is invasive ductal carcinoma (50%-75% of patients), followed by invasive lobular carcinoma (5%-15% of patients), with mixed ductal/lobular carcinomas and other rarer histologies making up the remainder of patients.5

Two main molecular targets in breast cancer pathogenesis have been identified. One is estrogen receptor alpha (ERα), which is expressed in approximately 70% of invasive breast cancers. ERα is a steroid hormone receptor and a transcription factor that, when activated by estrogen, activates oncogenic growth pathways in breast cancer cells. Expression of the closely related steroid hormone progesterone receptor (PR) is also a marker of ERα signaling.6 Tumors with expression of either estrogen receptor (ER) or PR in at least 1% of tumor cells are categorized as HR+.7 The use of endocrine agents to downregulate ER signaling is the primary systemic therapy for ER-positive or PR-positive breast cancers.

The second main molecular target is epidermal growth factor 2 (ERBB2, formerly HER2 or HER2/neu), a transmembrane receptor tyrosine kinase in the epidermal growth factor receptor family that is amplified or overexpressed in approximately 20% of breast cancers, and is associated with poor prognosis in the absence of systemic therapy.9 Tumors with amplification or overexpression of the gene ERBB2 are ERBB2+.3 Patients with ERBB2-amplified or -overexpressing breast cancer benefit from ERBB2-targeted therapy, including anti-ERBB2 antibodies (such as trastuzumab and pertuzumab) and small-molecule tyrosine kinase inhibitors (such as lapatinib and neratinib).

Triple-negative breast cancer, which makes up approximately 15% of all breast tumors,10 is characterized by the lack of expression of molecular targets ER, PR, or ERBB2. Triple-negative tumors have a high risk of distant relapse in the first 3 to 5 years following diagnosis.11 The specific molecular pathophysiology of triple-negative breast cancer remains poorly understood.

Distinct prevalences, prognoses, and systemic therapy options characterize the 3 breast cancer subtypes: HR+, ERBB2+, or triple-negative (Table 1). Triple-negative breast tumors are more likely to occur in women who are younger, black, or Hispanic,11 whereas HR+ tumors are more likely in older women. Breast cancer

Table 1. Prevalence, Prognosis, and Therapeutic Options for the 3 Breast Cancer Subtypes

<table>
<thead>
<tr>
<th>Pathological definition</th>
<th>Hormone Receptor (HR) +/ERBB2−</th>
<th>ERBB2+ (HR+ or HR−)</th>
<th>Triple-Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥1% of tumor cells stain positive for estrogen receptor or progesterone receptor proteins</td>
<td>Tumor cells stain strongly (3+) for ERBB2 protein or ERBB2 gene is amplified in tumor cells. Approximately half of ERBB2+ tumors are also HR+</td>
<td>Tumor does not meet any pathologic criteria for positivity of estrogen receptor, progesterone receptor, or ERBB2</td>
<td></td>
</tr>
</tbody>
</table>

| Molecular pathogenesis | Estrogen receptor α (a steroid hormone receptor) activates oncogenic growth pathways | The oncogene ERBB2, encoding ERBB2 receptor tyrosine kinase from the epidermal growth factor receptor family, is overactive | Unknown (likely various) |

| Percentage of breast cancer cases, % | 70 | 15-20 | 15 |

<table>
<thead>
<tr>
<th>Prognosis</th>
<th>Stage I (5-y breast cancer-specific survival), %1,2</th>
<th>≥99</th>
<th>≥94</th>
<th>≥85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metastatic (median overall survival)</td>
<td>4-5 y</td>
<td>5 y</td>
<td>10-13 mo</td>
<td></td>
</tr>
</tbody>
</table>

Typical systemic therapies for nonmetastatic disease (agents, route, and duration)	Endocrine therapy (all patients): Tamoxifen, letrozole, anastrozole, or exemestane	Chemotherapy plus ERBB2-targeted therapy (all patients): Paclitaxel/trastuzumab (TH)	Chemotherapy (all patients): AC
	Oral therapy	Adriamycin/cyclophosphamide/paclitaxel/trastuzumab (AC-T)	AC-T
	Chemotherapy (some patients): Adriamycin/cyclophosphamide (AC)	Docetaxel/cyclophosphamide (TC)	TC
	Adriamycin/cyclophosphamide/paclitaxel (AC-T)	Intravenous therapy	Intravenous therapy
	Docetaxel/cyclophosphamide (TC)	Intravenous therapy	12-20 wk
	12-20 wk of chemotherapy; 1 y of ERBB2-targeted therapy	1 y of ERBB2-targeted therapy	12-20 wk

| 1y of ERBB2-targeted therapy |
	Doxorubicin/cyclophosphamide (AC)
	Paclitaxel/trastuzumab (TH)
	Docetaxel/carboplatin/trastuzumab
	Pertuzumab (TCH±P)

a Prognosis estimated from nearly 44 000 patients with breast cancer enrolled in the California Cancer Registry (2005-2008); stage I breast cancer defined by the American Joint Committee on Cancer staging manual anatomic staging table, 8th edition. 95% CIs for stage 15-year breast cancer-specific survival estimates are as follows: 98%-100% for HR+/ERBB2−, 83%-100% for ERBB2+, and 75%-98% for triple-negative.

b Prognosis listed is from time of diagnosis of metastatic breast cancer.
is staged I-IV, where IV denotes distant metastatic disease. Stage I breast cancers, defined anatomically as a breast tumor smaller than 2 cm and no lymph node involvement, have 5-year breast cancer–specific survival of at least 99%, at least 94%, and at least 85% for HR+, ERBB2+, and triple-negative subtypes, respectively. Stage IV breast cancers have median overall survival of approximately 5 years for HR+ or ERBB2+ subtypes and 1 year for triple-negative.

Principles of Therapy

For nonmetastatic breast cancer, the main goals of therapy are eradicating tumor from the breast and regional lymph nodes and preventing metastatic recurrence. Local therapy for nonmetastatic breast cancer consists of surgical resection and sampling or removal of axillary lymph nodes, with consideration of postoperative radiation. Systemic therapy may be preoperative (neoadjuvant), postoperative (adjuvant), or both. Breast cancer subtype guides the standard systemic therapy administered (Table 1), which consists of endocrine therapy for all HR+ tumors (with some patients requiring chemotherapy as well), trastuzumab-based ERBB2-directed antibody therapy plus chemotherapy for all ERBB2+ tumors (with endocrine therapy given in addition, if concurrent HR positivity), and chemotherapy alone for triple-negative breast cancer.

For metastatic breast cancer, therapeutic goals are prolonging life and symptom palliation. Currently, metastatic breast cancer remains incurable in virtually all affected patients. The same basic categories of systemic therapy are used in metastatic breast cancer as in neoadjuvant/adjuvant approaches outlined here. Local therapy modalities (surgery and radiation) are typically used for palliation only in metastatic disease.

Systemic Therapy for Nonmetastatic Breast Cancer

HR+/ERBB2− Subtype

Endocrine therapy, which counteracts estrogen-promoted tumor growth, is the primary systemic therapy for HR+/ERBB2− breast cancer. Standard endocrine therapy consists of oral antiestrogen medication taken daily for 5 years, and options differ according to menopausal status. Tamoxifen is a selective estrogen receptor modulator that competitively inhibits estrogen’s binding to ER and is effective in both pre- and postmenopausal women. Aromatase inhibitors (anastrozole, exemestane, and letrozole) decrease circulating estrogen levels by inhibiting conversion of androgens to estrogen and are effective only in postmenopausal women (including those who are postmenopausal because of medical ovarian suppression or oophorectomy). Typical adverse effects of endocrine therapy are listed in Table 2.

Five years of tamoxifen for patients with HR+ breast cancer reduces the breast cancer recurrence rate by approximately 50% in the first 5 years after diagnosis compared with no endocrine therapy. The absolute benefit of tamoxifen is proportional to the risk associated with a given tumor. For example, a woman with an anatomic stage III HR+ breast cancer may have a 50% 5-year risk of recurrence without systemic therapy reduced to 25% with a 5-year course of tamoxifen. A woman with anatomic stage I HR+ breast cancer and a 10% 5-year risk of recurrence without systemic therapy has her recurrence risk reduced to 5% with a 5-year course of tamoxifen. Compared with 5 years of tamoxifen, 5 years of aromatase inhibitor in a postmenopausal woman is somewhat more effective. In a meta-analysis of 31,920 women, tamoxifen was associated with a 10-year breast cancer recurrence risk of 22.7% vs 19.1% for aromatase inhibitors. A “switch” strategy (initial 2-3 years of tamoxifen, followed by aromatase inhibitor for completion of a 5-year course of endocrine therapy) is equivalent to 5 years of aromatase inhibitor use for breast cancer mortality, and is a viable strategy for women who wish to mitigate toxicities from both classes of endocrine therapy. Because absolute benefit is related to risk, in low-risk patients, the added benefit of aromatase inhibitors over tamoxifen is small, and treatment decisions should be guided by adverse effects. Even in higher-risk women, intolerance of an aromatase inhibitor should lead to substitution of tamoxifen.

When treating a premenopausal woman with endocrine therapy, the first decision is whether to treat with ovarian suppression using gonadotropin-releasing hormone agonists, such as leuprolide acetate and goserelin, or oophorectomy to induce menopause; the second decision, if inducing menopause, is whether to treat with tamoxifen or aromatase inhibitor. These approaches have been compared in 2 large clinical trials (combined N = 5738),\(^{19,20}\) A small but significant improvement in 8-year overall survival was observed with ovarian suppression plus tamoxifen compared with tamoxifen alone (93.3% vs 91.5%, respectively; \(P = .01\)). Ovarian suppression plus aromatase inhibitor is not associated with better survival compared with ovarian suppression plus tamoxifen; however, the former combination shows a modest improvement in 8-year freedom from distant recurrence compared with ovarian suppression plus tamoxifen (91.8% vs 89.7%, respectively; \(P = .02\)).\(^{20}\) Overall, adding ovarian suppression to either tamoxifen or aromatase inhibitor is indicated in premenopausal women with higher-risk disease, with aromatase inhibitors favored for those at the highest risk.

Patients with HR+ breast cancer are at risk of recurrent disease even multiple decades after primary diagnosis.\(^{21}\) Therefore, studies have evaluated extending both tamoxifen and aromatase inhibitors beyond the typical 5-year duration. Two randomized trials compared 5 vs 10 years of tamoxifen, and showed a small but significant improvement (2.8% absolute improvement) in breast cancer mortality with a 10-year course of therapy. As expected, higher rates of endometrial cancer and thromboembolic disease were observed with longer therapy (Table 2).\(^{22,23}\) A separate trial evaluated 5 vs 10 years of aromatase inhibitor use, and found a small reduction in distant recurrences with longer therapy. There was no significant improvement in overall survival with extended-duration aromatase inhibitor therapy, whereas new-onset osteoporosis and fracture (known adverse effects of aromatase inhibitors) were both significantly more common.\(^{24}\) Therefore, extending endocrine therapy provides small benefits but adds toxicity and thus warrants consideration in high-risk patients.

Clinicians must decide when to add chemotherapy to endocrine therapy for patients with HR+/ERBB2+ breast cancer. Clinico-pathologic features, such as anatomic stage and tumor grade, are important but imperfect components of risk and chemosensitivity assessment.\(^{21,25,26}\) Multiple RNA-based genomic risk scores have been developed to estimate prognosis and predict chemotherapy benefit. Published prospective evidence regarding the value of
Table 2. Important Toxicities of Common Treatments for Nonmetastatic Breast Cancer

<table>
<thead>
<tr>
<th>Agent/Regimen</th>
<th>Mechanisms</th>
<th>Common Toxicities (>10%)</th>
<th>Uncommon Toxicities (≤10%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endocrine Therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamoxifen</td>
<td>• Selective estrogen receptor modulator
 • Competitively inhibits binding of estrogen to estrogen receptor
</td>
<td>Hot flashes (42.9%)<sup>100</sup></td>
<td>Uterine cancer (0%-2.7% increase compared with no-tamoxifen control; risk increases with age)<sup>17,18</sup>
 • Thromboembolic disease (2.5% increase compared with letrozole control)<sup>100</sup></td>
</tr>
<tr>
<td>Aromatase inhibitor (letrozole, anastrozole, or exemestane)</td>
<td>• Inhibit conversion of androgens to estrogen
</td>
<td>Hot flashes (37.7%)<sup>100</sup>
 • Arthralgias or myalgias (commonly joint stiffness/discomfort) (34.7%; 3.3% grade 3 and above)<sup>100</sup></td>
<td>Osteoporosis-related bone fracture (2.7% increase compared with tamoxifen control; risk increases with age)<sup>18</sup></td>
</tr>
<tr>
<td>Cytotoxic Chemotherapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Docetaxel/cyclophosphamide</td>
<td>• Docetaxel: disrupts mitosis by inhibiting microtubule function
 • Cyclophosphamide: alkylating agent, disrupts DNA replication
</td>
<td>Asthenia (>75%; 3% grade 3 and above)<sup>101</sup>
 • Neutropenia
 • Myalgias (33%)<sup>101</sup></td>
<td>Febrile neutropenia (8%)<sup>43</sup></td>
</tr>
<tr>
<td>Adriamycin/cyclophosphamide (AC)</td>
<td>• Adriamycin: disrupts DNA replication through multiple mechanisms
 • Cyclophosphamide: alkylating agent, disrupts DNA replication
</td>
<td>Asthenia (>75%; 4% grade 3 and above)<sup>101</sup>
 • Nausea (82%)<sup>101</sup></td>
<td>Leukemia, adriamycin-related (0.2%)<sup>14</sup></td>
</tr>
<tr>
<td>Adriamycin/cyclophosphamide/paclitaxel (AC-T)</td>
<td>As above for AC plus: • Paclitaxel: disrupts mitosis by inhibiting microtubule function
</td>
<td>Asthenia (75% grade 1) • Cardiac mortality, eg, adriamycin-related (rate ratio 1.61 compared with no-anthracycline; risk increases with age and cardiac risk factors)<sup>14</sup></td>
<td>Febrile neutropenia (2.5%)<sup>101</sup>,<sup>b</sup></td>
</tr>
<tr>
<td>Adriamycin/cyclophosphamide/paclitaxel (AC-T)</td>
<td>As above for AC plus:
</td>
<td>Nausea (82%)<sup>101</sup></td>
<td>Cardiac mortality, eg, adriamycin-related (rate ratio 1.61 compared with no-anthracycline; risk increases with age and cardiac risk factors)<sup>14</sup></td>
</tr>
<tr>
<td>Cytotoxic Chemotherapy + ERBB2-Directed Therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adriamycin/cyclophosphamide/paclitaxel/trastuzumab</td>
<td>As above for AC-T plus:
</td>
<td>Myelosuppression (anemia ≥ grade 3: 8%
</td>
<td>Cardiac mortality, eg, adriamycin-related (rate ratio 1.61 compared with no-anthracycline; risk increases with age and cardiac risk factors)<sup>14</sup></td>
</tr>
<tr>
<td>Docetaxel/carboplatin/trastuzumab</td>
<td>• Docetaxel: disrupts mitosis by inhibiting microtubule function
 • Carboplatin: cross-links DNA and disrupts DNA replication
 • Trastuzumab: antibody targeting ERBB2
</td>
<td>Astenia (all grades not listed; 7.2% grade 3 and above)<sup>49</sup></td>
<td>Class III-IV congestive heart failure (1.3%-3.1% increase compared with no-trastuzumab control)<sup>49</sup></td>
</tr>
</tbody>
</table>

^a Grading refers to Common Terminology Criteria for Adverse Events, where toxicity is graded on a scale of 1 (least severe) to 5 (most severe). This is not an exhaustive list of toxicities but rather a list of the most common or the most serious toxicities encountered in clinical practice.

^b Trials in which no patients received growth factor support to increase neutrophil counts.

These assays is summarized in Table 3. Two signatures, the 21-gene recurrence score and the 70-gene assay, are recommended by the American Society of Clinical Oncology to guide decisions on administering adjuvant chemotherapy for patients with HR+/ERBB2− node-negative breast cancer, based on high-quality evidence.^{30,31} More limited evidence suggests that these genomic assays are similarly associated with determination of chemotherapy benefit and prognosis in node-positive HR+/ERBB2− breast cancer (Table 3).^{26,29,32} However, because the data are preliminary and could evolve, the use of genomic risk scores as an indicator of chemotherapy benefit in node-positive disease is not universally accepted.^{30,31,33}

Chemotherapy Regimen Selection for ERBB2− Subtypes

Despite the associated short- and long-term risks, chemotherapy remains an essential treatment for preventing recurrence in many patients with stage I-III breast cancer. It is the only systemic therapy with demonstrated efficacy in triple-negative breast cancer and an important adjunct to endocrine therapy or ERBB2-directed therapy in patients with HR+/ERBB2− or ERBB2+ breast cancer, respectively. A meta-analysis of approximately 100,000 women enrolled in randomized trials of chemotherapy for early breast cancer demonstrated that a high-dose anthracycline-containing chemotherapy regimen (compared with no chemotherapy) significantly reduced 10-year breast cancer mortality by approximately one-third (risk ratio, 0.64 [standard error, 0.09]), with most survival benefit occurring in the first 5 years after diagnosis. As adjuvant endocrine therapy for HR+ tumors, higher-risk tumors are associated with greater absolute benefit from chemotherapy.³⁴

Many different neoadjuvant and adjuvant chemotherapy regimens may be considered in early breast cancer. Major prospective trials leading to the establishment of standard modern regimens are shown in Figure 1. Overall, the regimens docetaxel/cyclophosphamide, adriamycin/cyclophosphamide, and cyclophosphamide/methotrexate/5-fluorouracil are all reasonable choices in lower-risk patients where chemotherapy benefits are smaller and toxicities are especially important considerations. Chemotherapy regimens containing both anthracycline (eg, adriamycin) and taxane (such as adriamycin/cyclophosphamide followed by taxane) achieve the greatest risk reduction and remain the appropriate choice in high-risk patients. Specifically, the use of anthracycline appears most important in patients with more lymph node involvement and with triple-negative disease.⁴³ Chemotherapy toxicities are listed in Table 2. In patients who receive a complete course of neoadjuvant...
Patients had other breast cancer subtypes. All HR+ patients received adjuvant endocrine therapy.

b Scale from 0 to 100, with 0 being the best prognosis and 100 being the worst prognosis.

c In TAILORx, there was no significant benefit for chemotherapy with scores ≥25 in the overall treatment population. However, there was some suggestion of chemotherapy benefit for women ≥50 years old with scores 21-25, possibly caused by chemotherapy-mediated ovarian suppression, which should be discussed with patients.

d Chemotherapy vs no chemotherapy.

chemotherapy with anthracycline and taxane, it remains unclear when to give additional treatment if there is residual disease found at surgery. A recent trial suggested that capecitabine could lower recurrence rates and improve survival for patients with residual disease following neoadjuvant chemotherapy,44 but many unanswered questions remain about this approach.

Triple-Negative Subtype

Given the relatively unfavorable prognosis (Table 1), chemotherapy is generally administered to all patients with triple-negative breast tumors larger than 5 mm, even with negative axillary nodes. Chemotherapeutic agents are the only ones approved by the Food and Drug Administration (FDA) for treating nonmetastatic triple-negative disease. Because deficient DNA damage repair is a biological hallmark of some triple-negative tumors,10 investigation of the DNA-crosslinking platinum chemotherapies has been of interest in triple-negative disease. Two trials have randomized patients with triple-negative breast cancer to receive neoadjuvant chemotherapy with or without carboplatin, and both demonstrated a significant improvement in pathologic complete response (pCR)

Table 3. Summary From Prospective Evaluations of Genomic Risk Scores for Chemotherapy Decision Making in Nonmetastatic Breast Cancer

<table>
<thead>
<tr>
<th>21-Gene Assay</th>
<th>70-Gene Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAILORx²⁵,²⁷</td>
<td>MINDACT²⁹</td>
</tr>
<tr>
<td>TAILORx²⁷</td>
<td>MINDACT²⁹</td>
</tr>
<tr>
<td>TAILORx²⁷</td>
<td>MINDACT²⁹</td>
</tr>
<tr>
<td>WSSG PlanB²⁶</td>
<td>RxPONDER²⁸</td>
</tr>
<tr>
<td>RxPONDER²⁸</td>
<td>RxPONDER²⁸</td>
</tr>
<tr>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

- **Total patients, No.**
 - TAILORx²⁵,²⁷: 1619
 - TAILORx²⁷: 6711
 - TAILORx²⁷: 6711
 - WSSG PlanB²⁶: 1389
 - RxPONDER²⁸: 348
 - RxPONDER²⁸: TBD
 - TBD: TBD
 - MINDACT²⁹: 1550
 - MINDACT²⁹: 1550

- **Score category**
 - Low (≤10): Intermediate (11-25)
 - Intermediate (11-25): High (≥26)
 - Low (≤11): Intermediate (≤25)
 - Intermediate (≤25): High (≥26)

- **Long-term outcome**
 - 96.8% 9-y disease-free survival (±0.7 SE)
 - 94.5% 9-y disease-free survival (±0.3 SE)
 - 95.9% 9-y disease-free survival (±0.5 SE)
 - 98.4% 3-y disease-free survival (95% CI, 97.0%-99.8%)
 - Not yet reported
 - Not yet reported

- **Chemotherapy receipt of included patients**
 - No: No (by randomization)
 - Yes: Yes (by randomization)

- **Nodal status of included patients**
 - NO: NO
 - N0: N0
 - N1: N1
 - N0-N1: N0-N1
 - N1: N1
 - N0-N1: N0-N1

- **Abbreviations:** HR, hormone receptor; MINDACT, Microarray in Node-Negative and 1 to 3 Positive Lymph Node Disease May Avoid Chemotherapy; N1, 1-3 positive lymph nodes; RxPONDER, Rx for Positive Node, Endocrine Responsive Breast Cancer; TAILORx, Trial Assigning Individualized Options for Treatment; TBD, to be determined; WSSG, West German Study Group.

- a In these prospective studies, genomic biomarkers were used to stratify patients into low risk, intermediate risk, or high risk. None of the low-risk patients received chemotherapy, while all of the high-risk patients received chemotherapy. Those who were at intermediate risk were randomized to chemotherapy or no chemotherapy. Of note, all patients were HR+/HER2− except in the MINDACT study, where 9.5% of patients had other breast cancer subtypes. All HR+ patients received adjuvant endocrine therapy.

- b Scale from 0 to 100, with 0 being the best prognosis and 100 being the worst prognosis.

- c In TAILORx, there was no significant benefit for chemotherapy with scores ≥25 in the overall treatment population. However, there was some suggestion of chemotherapy benefit for women ≥50 years old with scores 21-25, possibly caused by chemotherapy-mediated ovarian suppression, which should be discussed with patients.

- d Chemotherapy vs no chemotherapy.
at surgery with the addition of carboplatin (from 41% to 54% in one trial and from 37% to 53% in the other). However, only 1 of the trials demonstrated a significant improvement in disease-free survival in the carboplatin-containing group, and in this case, the other components of the chemotherapy regimen were not consistent with standard therapy and did not include an alkylating agent. Therefore, the role of platinum salts in the treatment of patients with stage I-III triple-negative breast cancer remains uncertain.

For triple-negative tumors treated with neoadjuvant chemotherapy, pCR (all tumor gone from the breast and lymph nodes) at surgery is a highly favorable prognostic biomarker. In a meta-analysis of patients treated with neoadjuvant chemotherapy, prognosis was improved in patients with triple-negative breast cancer (N = 1157) who achieved pCR compared with those who did not (hazard ratio, 0.24 for event-free survival with pCR). New treatment approaches for patients with triple-negative disease who do not achieve pCR are needed, and platinum chemotherapy is one strategy being evaluated in several clinical trials. To date, the only evidence-based adjuvant escalation strategy available in this setting is single-agent capecitabine, as discussed here.44

ERBB2+ Subtype
The development of ERBB2-targeted therapy has been one of the greatest advances in breast cancer treatment. Trastuzumab, a monoclonal antibody targeting the extracellular domain of ERBB2, first entered clinical trials in the 1990s. Four randomized adjuvant trials demonstrated that the addition of 1 year of trastuzumab to standard adjuvant chemotherapy markedly improved disease-free survival and overall survival for patients with ERBB2+ breast cancer, with disease-free survival hazard ratios of 0.48 to 0.75 favoring trastuzumab-containing regimens.8,48,49 While several different chemotherapy regimens combined with trastuzumab were studied across these trials, the 2 guideline-preferred neoadjuvant/adjuvant accompanying chemotherapy regimens in stages II and III ERBB2+ breast cancer in the United States are adriamycin/cyclophosphamide-paclitaxel and docetaxel/carboplatin (see notable toxicities in Table 2).50 The 1-year duration of neoadjuvant/adjuvant trastuzumab comes from prospective comparisons showing 2 years is no better than 1, whereas therapy for less than 1 year is inferior to 1 year in most, but not all, studies.50-53 Even 9 weeks of adjuvant trastuzumab is superior to none for patients with ERBB2+ breast cancer.54

Following the significant effectiveness of trastuzumab for preventing recurrences and death from ERBB2+ breast cancer, subsequent investigations have focused on (1) decreasing the number of accompanying chemotherapy agents in lower-risk patients and (2) adding novel agents in higher-risk patients. In a single-group trial, 406 patients with tumors that were mostly less than 2 cm and node-negative were treated with adjuvant paclitaxel for 12 weeks and the standard 1 year of adjuvant trastuzumab. The 7-year recurrence-free interval was 97.5%, with 5 local-regional recurrences and 4 distant recurrences at 7-year follow-up.55 Given the excellent long-term outcomes and reduced toxicity of single-agent accompanying chemotherapy, paclitaxel/trastuzumab is now the standard of care for patients with small, node-negative ERBB2+ tumors.

In patients with higher-risk ERBB2+ breast cancer, the agents pertuzumab and neratinib further lower the risk of recurrence below what is observed with standard trastuzumab-containing regimens. Pertuzumab is a monoclonal antibody targeting the ERBB2 dimerization domain. In a phase 3 randomized trial of 4804 patients with stage I-III ERBB2+ breast cancer, pertuzumab led to a small but statistically significant improvement in 3-year invasive disease-free survival (94.1% with pertuzumab vs 93.2% with placebo; hazard ratio, 0.81 [95% CI, 0.66-1.00]; P = .045). In subgroup analyses, risk reduction with pertuzumab was observed in node-negative and HR− patients but was not observed in node-negative and HR+ subgroups, though the trial did not have statistical power to evaluate these individual subgroups and follow-up was relatively short.56 At this time, treatment regimens incorporating pertuzumab are reasonable to use in high-risk patients defined by tumor size and nodal status, while the added toxicity and cost in lower-risk patients is difficult to justify.

Neratinib is an oral small-molecule tyrosine kinase inhibitor of multiple HER family members, including ERBB2. A randomized phase 3 trial of 2840 patients compared 1 year of adjuvant daily neratinib vs placebo following completion of neoadjuvant/adjuvant chemotherapy plus trastuzumab for ERBB2+ breast cancer. Invasive disease-free survival at 5 years favored neratinib (90.2% with neratinib vs 87.7% with placebo; hazard ratio, 0.73 [95% CI, 0.57-0.92]; P = .008). In contrast to the pertuzumab adjuvant trial, this invasive disease-free survival advantage was observed only in the HR+ subgroup and not in HR− patients, though reasons for this are unclear.57 At present, there is no direct evidence to support using adjuvant neratinib in a pertuzumab-treated patient, or vice versa, as the major trials of each agent did not include use of the other. Finally, to date, neither agent has shown overall survival benefit when administered as adjuvant therapy.

Local Therapy for Nonmetastatic Breast Cancer
Surgery
Surgical treatment of breast cancer has evolved significantly in past decades, with advances aimed at minimizing the long-term cosmetic and functional sequelae of local therapy. Based on decades of research, the standard approaches are either a total mastectomy or an excision plus radiation, assuming that clear margins can be achieved. These 2 approaches have been shown consistently to be equivalent with regard to relapse-free and overall survival.58 Contraindications to conservative surgery include (1) the presence of diffuse suspicious microcalcifications on breast imaging; (2) positive pathologic margins after lumpectomy; (3) disease that cannot be addressed by excision of a single breast tissue region with satisfactory cosmetic result, except in highly select patients; (4) certain collagen-vascular diseases, such as scleroderma; and (5) prior radiotherapy to the involved breast.59

Surgical management of axillary lymph nodes must be considered separately from surgical therapy of the breast. Lymph node removal serves both a diagnostic purpose (determining the anatomic extent of the breast cancer) and a therapeutic purpose (removal of cancerous cells). Surgical decision-making is based on whether axillary lymph node involvement is evident at diagnosis and whether neoadjuvant systemic therapy is administered. Axillary lymph node dissection (ALND), which remains standard of care in any patient with clinically evident axillary involvement at diagnosis who undergoes surgery as initial treatment, was the universal approach to the axilla until clinical trials demonstrated that in women...
with clinically node-negative (cN0) breast cancer, there was no significant difference in regional recurrence or survival outcomes between women who underwent full ALND vs women who underwent sentinel lymph node (SLN) biopsy, with conversion to ALND only if the SLN was positive.\(^6^9\) Of note, "false-negative" SLN biopsy in the setting of cN0 disease and surgery as initial treatment has typically been as high as 5% to 10%, suggesting that leaving some axillary disease in place does not compromise long-term outcomes.\(^6^0\)

Subsequent trials have demonstrated that ALND is not necessary even in all patients with a positive SLN. The landmark American College of Surgeons Oncology Group (ACOSOG) Z0011 trial enrolled 891 patients with cN0 breast tumors ≤5 cm in diameter and 1 to 2 positive SLNs (excluding patients with gross extranodal extension), all of whom underwent lumpectomy and breast radiation. Patients were randomized to ALND or SLN biopsy, with no difference in regional or distant recurrence-free survival or overall survival.\(^6^1\) The AMAROS (After Mapping of the Axilla: Radiotherapy or Surgery) trial followed a similar design except that a subset of patients underwent mastectomy, and patients with positive SLNs were randomized to ALND or axillary radiation. As in ACOSOG Z0011, the non-ALND option was equivalent to ALND for long-term outcomes.\(^6^2\)

In both trials, lymphedema was significantly more prevalent in the group undergoing ALND (23% vs 11% in non-ALND patients).\(^6^1,6^2\) Thus, in cN0 patients undergoing conservative surgery with tumor size ≤5 cm and only 1 to 2 positive SLNs prior to systemic therapy, SLN biopsy alone is sufficient axillary treatment for most, with the option of adding axillary radiation in selected patients.

The surgical treatment of patients who receive neoadjuvant systemic therapy is evolving. Multiple prospective randomized trials, and a recent meta-analysis, demonstrate that neoadjuvant chemotherapy increased patients' eligibility for breast-conserving therapy, without compromising long-term outcomes.\(^5^3,6^4\) Some evidence suggested that among clinically node-positive (cNI) patients who convert to cNO after neoadjuvant therapy, the false-negative rate of SLN biopsy was similar to that in patients undergoing upfront surgery.\(^6^5\) as long as care was taken to maximize SLN identification (eg, use of dual SLN mapping methodology, consideration for placing a clip in the biopsy-proven node and retrieval of the clipped node at the time of SLN dissection, and retrieval of at least 3 SLNs). Therefore, current clinical practice and guidelines generally support the use of SLN biopsy in this setting (cNI converted to cNO), with omission of ALND in patients who are SLN negative by stringent criteria.\(^6^5\) However, optimal treatment of lymph node disease after neoadjuvant therapy is an area of active investigation.

Radiation Therapy

Radiation therapy in breast cancer may be delivered to the whole breast or a portion of the breast (after lumpectomy), the chest wall (after mastectomy), and the regional lymph nodes. Postlumpectomy whole-breast radiation is a standard component of breast-conserving therapy.\(^5^8\) A meta-analysis of 10801 patients showed that administration of radiation following lumpectomy was associated with reductions in breast cancer recurrences (locoregional or distant) by approximately half (from 35.0% to 19.3%) and in breast cancer deaths by one-sixth (from 25.2% to 21.4%) at 10 and 15 years, respectively. As with adjuvant systemic therapies, the proportional benefit of radiation was approximately constant regardless of overall breast cancer risk. Thus, the absolute benefits were larger in patients with higher-risk disease, and conversely, the mortality benefit confidence interval included zero in patients with the lowest-risk node-negative tumors.\(^6^6\)

Prospective trials have examined the efficacy of a shorter course of radiation after lumpectomy and how to identify patients who can benefit from escalated dosing. While the historical standard dose and schedule of postlumpectomy radiation was 50 Gy over 25 fractions, more recent evidence has shown that a hypofractionated schedule (approximately 42.5 Gy over 16 fractions) is as effective for local recurrence risk reduction and equally if not more effective for cosmesis.\(^6^7,6^8\) Therefore, a hypofractionated schedule for whole-breast radiation is now “preferred” per current guidelines.\(^5^0\)

Postlumpectomy radiation to the partial breast, as opposed to the whole breast, is an approach that has been studied predominantly in lower-risk patients 50 years of age and older. Though some trials suggested that partial breast radiation was associated with a slightly higher local recurrence risk and slightly worse cosmesis, emerging data contradict this, and consensus guidelines support noninvasive partial breast radiation in low-risk patients.\(^5^0,6^9,7^0\) Administering a boost of radiation specifically to the tumor bed improves local control but not overall survival and should be considered in higher-risk patients.\(^5^0,7^1\) Further, prospective randomized trials have shown that in women 65 years and older or 70 years and older with low-risk HR+/HER2− breast cancer, postlumpectomy whole-breast radiation has no significant effect on distant recurrence or overall survival (though omitting radiation leads to a small increased risk of locoregional events).\(^7^2,7^3\) Whole-breast radiation should be discussed on an individualized basis with older women who fit this profile.

Postmastectomy radiation is to the chest wall, sometimes with incorporation of a boost to the mastectomy scar and/or regional nodal radiation. A meta-analysis (N = 8135) of randomized trials of radiation following mastectomy with ALND showed that in patients with negative lymph nodes, receipt of postmastectomy radiation was not associated with recurrence or survival outcomes. However, in patients with positive lymph nodes, receipt of postmastectomy radiation was associated with improved locoregional and overall recurrence risk and breast cancer mortality. Of note, the trials included in this meta-analysis were conducted from 1964 to 1986, and it is likely that postmastectomy radiation benefits are substantially smaller with modern systemic therapy regimens.\(^7^4\) The addition of regional nodal radiation (covering the axillary, paracervical, and/or internal mammary nodes) either following lumpectomy or following mastectomy was associated with significantly improved disease-free survival, was not associated with overall survival, and was associated with an increase in radiation toxicities such as pneumonitis and lymphedema. The benefits of regional nodal radiation were observed in women who had undergone ALND.\(^7^5,7^6\) Given the lack of overall survival benefit, nodal radiation is not universally administered even in node-positive patients, but should be considered for patients with higher nodal disease burden or high-risk biology.

Systemic Therapy for Metastatic Breast Cancer

More than 150 000 women in the United States are living with a diagnosis of metastatic breast cancer. Nearly 41 000 deaths from
breast cancer occur annually, virtually all due to metastatic disease. Median overall survival for metastatic breast cancer by subtype is shown in Table 1. Tumor- and patient-level factors are prognostically important: visceral metastases, brain metastases, and multiple metastatic sites all confer worse prognosis, whereas a better performance status, younger age at diagnosis, bone-only metastatic disease, and longer disease-free interval between initial diagnosis and development of metastatic recurrence all confer improved prognosis.

An overview of the approach to systemic therapy of metastatic disease by breast cancer subtype, including standard regimens used early in treatment course (ie, early lines) plus agents for consideration later in treatment course (ie, later lines), is shown in Figure 2. A few general principles are paramount. In metastatic HR+/ERBB2− breast cancer, early treatment should be endocrine therapy based, typically with incorporation of a cyclin-dependent kinase (CDK) 4/6 inhibitor, such as abemaciclib, palbociclib, or ribociclib, in the first or second line. After resistance develops to the available hormonal options, patients transition to treatment with chemotherapy. Multiple prospective randomized trials have demonstrated equivalent overall survival for sequential single-agent vs combination chemotherapy in metastatic breast cancer, with less toxicity and improved patient quality of life on single agents. Thus, the standard of care is single-agent sequential chemotherapy. The same is true for metastatic triple-negative breast cancer, where cytotoxic chemotherapy is the only alternative.
In patients without germline BRCA1/2 mutations (where targeted inhibitors of poly-ADP-ribose polymerase [PARP] enzymes are approved). In ERBB2+ metastatic breast cancer, standard first-line therapy consists of a taxane plus trastuzumab and pertuzumab, and the antibody-drug conjugate trastuzumab emtansine is frequently used as second-line therapy. Subsequent treatment generally combines a new chemotherapy agent (or endocrine therapy, if HR+) with an ERBB2-targeted agent, as the continuation of ERBB2-directed therapy even after progression with prior anti-ERBB2 therapy has been shown to improve outcomes.87

Table 4 summarizes drugs newly approved for metastatic breast cancer by the US Food and Drug Administration in the past 6 years (2013-Present). More effective therapy for patients with metastatic triple-negative breast cancer is needed. Recent data indicate that novel antibody-drug conjugates have promising activity in pretreated metastatic triple-negative breast cancer, and late-phase clinical trials are ongoing.84 A recent phase 3 trial (N = 902) of nab-paclitaxel plus either the programmed death-ligand1 (PD-L1) inhibitor atezolizumab or placebo demonstrated improved progression-free survival for the chemotherapy and immunotherapy combination.90 This study will likely lead to a new standard approach for at least some patients with triple-negative metastatic disease. Last, brain metastases are diagnosed in approximately 10% to 20% of patients with metastatic breast cancer, and their treatment remains a therapeutic challenge.91 Women with ERBB2+ and triple-negative disease are at highest risk of developing brain metastases. Poor permeability of many systemic therapies because of the blood-brain barrier, distinct features of the brain microenvironment, and genomic differences in brain vs non-brain metastatic lesions may have previously limited progress.83

Table 4. New Metastatic Breast Cancer Drug Approvals by the US Food and Drug Administration in the Past 6 Years (2013-Present)

<table>
<thead>
<tr>
<th>Drug Name</th>
<th>Drug Class</th>
<th>Drug Mechanism</th>
<th>MBC Indication*</th>
<th>Notable Toxicities*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abemaciclib</td>
<td>CDK4/6 inhibitor</td>
<td>Inhibit progression through the cell cycle</td>
<td>With aromatase inhibitor; as first-line endocrine therapy</td>
<td>Myelosuppression (anemia: 29%, neutropenia: 46%, thrombocytopenia: 16%)</td>
</tr>
<tr>
<td>Palbociclib</td>
<td>CDK4/6 inhibitor</td>
<td>With aromatase inhibitor; as first-line endocrine therapy</td>
<td>With fulvestrant; ≥1 prior line of endocrine therapy for MBC</td>
<td>Myelosuppression (anemia: 24%, neutropenia: 80%, thrombocytopenia: 16%)</td>
</tr>
<tr>
<td>Ribociclib</td>
<td>CDK4/6 inhibitor</td>
<td>With aromatase inhibitor; as first-line endocrine therapy</td>
<td>With fulvestrant; ≥1 prior line of endocrine therapy for MBC</td>
<td>Myelosuppression (anemia: 19%, neutropenia: 74%, thrombocytopenia: <15%)</td>
</tr>
<tr>
<td>Olaparib</td>
<td>PARP inhibitor</td>
<td>Interfere with normal cellular DNA damage repair</td>
<td>Patients with deleterious germline BRCA mutation; ≥1 prior line of chemotherapy (and ≥1 prior line of endocrine therapy if HR+) for MBC</td>
<td>Myelosuppression (anemia: 40%, neutropenia: 27%, thrombocytopenia: <15%)</td>
</tr>
<tr>
<td>Talazoparib</td>
<td>PARP inhibitor</td>
<td>Patients with deleterious germline BRCA mutation</td>
<td>Myelosuppression (anemia: 53%, neutropenia: 35%, thrombocytopenia: 27%)</td>
<td></td>
</tr>
<tr>
<td>Trastuzumab-emtansine</td>
<td>ERBB2-targeted antibody-drug conjugate</td>
<td>Delivery of cytotoxic chemotherapy specifically to ERBB2+ tumor cells</td>
<td>Following prior therapy with trastuzumab and taxane</td>
<td>Thrombocytopenia (28%)</td>
</tr>
</tbody>
</table>

Abbreviations: CDK, cyclin-dependent kinase; MBC, metastatic breast cancer; PARP, poly-ADP ribose polymerase.

* Notable toxicities are those that are common and/or clinically relevant in standard clinical practice. Grading refers to Common Terminology Criteria for Adverse Events, where toxicity is graded on a scale of 1 (least severe) to 5 (most severe).
Role of Genomics in Treatment Decisions

Germline mutations in BRCA1 or BRCA2 are the only DNA alterations with an associated targeted therapy that has demonstrated clinical efficacy in breast cancer. Approximately 5% of patients with breast cancer carry germline mutations in BRCA1 or BRCA2, tumor suppressor genes that function in DNA damage repair. Inhibition of PARP enzymes has been shown to specifically target BRCA-deficient cells, in part by synthetic lethality.92 In 2018, the FDA approved the PARP inhibitors olaparib and talazoparib for treating patients with refractory metastatic breast cancer with deleterious germline mutations in BRCA1/2 (Table 4). The presence of mismatch repair deficiency or high microsatellite instability are now FDA-approved indications to use the checkpoint inhibitor immunotherapy pembrolizumab (anti-programmed cell death-1 [PD-1] antibody) in any refractory malignancy, though only a minority (1%-2%) of breast tumors have these alterations.93

Otherwise, outside of a clinical trial, tumor DNA sequencing does not determine treatment decisions in breast cancer. Somatic activating mutations in ERBB2 and the estrogen receptor gene ESR1 are observed in some patients with breast cancer, and evolving clinical evidence suggests that both mutations may predict response and resistance to standard therapies: ERBB2-activating mutations confer possible sensitivity to neratinib, and ESR1 mutations appear to confer resistance to aromatase inhibitors, with largely retained sensitivity to fulvestrant.94,96 Prospective trials of patients selected for specific mutations are ongoing; at present, neither mutation has treatment implications outside of a clinical trial.

Disparities in Breast Cancer

A substantial proportion of breast cancer deaths is due to health disparities. Breast cancer mortality rates are 41% higher in black Americans than in white Americans.97 and this disparity has increased steadily since the 1990s.98 A study of 563,497 black and white American women with breast cancer in the National Cancer Data Base demonstrated that black women were more likely to be uninsured or have Medicaid insurance (22.7% vs 8.4%), present with HR− tumors (35.2% vs 19.3%), and present with larger tumors (16.4% vs 9.8%). The top 4 factors contributing to breast cancer mortality differences between black and white women were, in order of decreasing importance, insurance status, tumor characteristics (such as size and receptor status), comorbidities, and breast cancer treatment (such as receipt of surgery, radiation, or chemotherapy).97 Independent of race/ethnicity, lower socioeconomic status contributes to poorer outcomes.99 A commitment to studying and eradicating disparities is necessary in the breast cancer community as a whole.

Limitations

This review has several limitations. First, aspects of breast cancer treatment may be institution specific and some of the practice patterns described here reflect the authors’ own institution. Second, the practices described are based on drugs approved and available in the United States, and differ internationally. Third, the diagnostic and prognostic statistics provided relate to populations of women in the United States undergoing screening mammography, and may not be applicable to unscreened or international populations.

Conclusions

Breast cancer consists of 3 major tumor subtypes categorized according to estrogen or progesterone receptor expression and ERBB2 gene amplification. The 3 subtypes have distinct risk profiles and treatment strategies. Optimal therapy for each patient depends on tumor subtype, anatomic cancer stage, and patient preferences.

ARTICLE INFORMATION

Accepted for Publication: December 10, 2018.

Author Contributions: Drs Waks and Winer had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Both authors.

Acquisition, analysis, or interpretation of data: Waks.

Drafting of the manuscript: Both authors.

Critical revision of the manuscript for important intellectual content: Both authors.

Administrative, technical, or material support: Both authors.

Supervision: Both authors.

Conflict of Interest Disclosures: Dr Winer reported personal fees from Genentech, Lilly, Tesaro, GlaxoSmithKline, Leap Pharmaceuticals, Carrick Therapeutics, and Jounce Pharmaceuticals and stock options from Verastem outside the submitted work. No other disclosures were reported.

Additional Contributions: We gratefully acknowledge Jennifer Bellon, MD (Dana-Farber Cancer Institute, Boston, Massachusetts), and Tari King, MD (Brigham and Women’s Hospital, Boston, Massachusetts), for their assistance in reviewing portions of this manuscript. They did not receive compensation for their contributions.

Submissions: We encourage authors to submit papers for consideration as a Review. Please contact Edward Livingston, MD, at Edward.livingston@janamnetwork.org or Mary McGraw McDermott, MD, at mmd608@northwestern.edu.

REFERENCES

Clinical Review & Education Review

Breast Cancer Treatment in 2019

Review
Clinical Review & Education

[Reprinted] JAMA
jama.com
BreastCancerTreatmentin2019

77. Mariotto AB, Etzioni R, Hurlbert M, Penberthy L, Mayer M. Estimation of the number of women...

